Машинное обучение. Нейронные сети глубокого обучения. К.В. Воронцов, Школа анализа данных, Яндекс.
Описание
Современный бум искусственных нейронных сетей обязан своим появлением конкурсу по классификации изображений ImageNet. Свёрточные нейронные сети осуществили прорыв в компьютерном зрении, впервые обеспечив высокое качество распознавания при обучении по большим данным. Свёрточные слои осуществляют обучаемое преобразование сырого представления объекта в векторное представление фиксированной размерности, с которым далее работает полносвязная сеть, как правило, из небольшого числа слоёв. Для обработки сигналов и текстов используются рекуррентные нейронные сети, для которых есть свой вариант метода BackPropagation. Одна из самых известных рекуррентных сетей – LSTM, а также её упрощённый вариант GRU. Вкратце рассматриваются важнейшие нейросетевые техники – автокодировщики, перенос обучения, самостоятельное обучение, генеративные состязательные сети.
Комментарии